Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1342255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638880

RESUMO

Background and aims: With the advent and implementation of high-sensitivity cardiac troponin assays, differentiation of patients with distinct types of myocardial injuries, including acute thrombotic myocardial infarction (TMI), acute non-thrombotic myocardial injury (nTMi), and chronic coronary atherosclerotic disease (cCAD), is of pressing clinical importance. Thermal liquid biopsy (TLB) emerges as a valuable diagnostic tool, relying on identifying thermally induced conformational changes of biomolecules in blood plasma. While TLB has proven useful in detecting and monitoring several cancers and autoimmune diseases, its application in cardiovascular diseases remains unexplored. In this proof-of-concept study, we sought to determine and characterize TLB profiles in patients with TMI, nTMi, and cCAD at multiple acute-phase time points (T 0 h, T 2 h, T 4 h, T 24 h, T 48 h) as well as a follow-up time point (Tfu) when the patient was in a stable state. Methods: TLB profiles were collected for 115 patients (60 with TMI, 35 with nTMi, and 20 with cCAD) who underwent coronary angiography at the event presentation and had subsequent follow-up. Medical history, physical, electrocardiographic, histological, biochemical, and angiographic data were gathered through medical records, standardized patient interviews, and core laboratory measurements. Results: Distinctive signatures were noted in the median TLB profiles across the three patient types. TLB profiles for TMI and nTMi patients exhibited gradual changes from T0 to Tfu, with significant differences during the acute and quiescent phases. During the quiescent phase, all three patient types demonstrated similar TLB signatures. An unsupervised clustering analysis revealed a unique TLB signature for the patients with TMI. TLB metrics generated from specific features of TLB profiles were tested for differences between patient groups. The first moment temperature (TFM) metric distinguished all three groups at time of presentation (T0). In addition, 13 other TLB-derived metrics were shown to have distinct distributions between patients with TMI and those with cCAD. Conclusion: Our findings demonstrated the use of TLB as a sensitive and data-rich technique to be explored in cardiovascular diseases, thus providing valuable insight into acute myocardial injury events.

2.
Curr Oncol ; 30(7): 6079-6096, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504313

RESUMO

Melanoma is the fifth most common cancer in the United States and the deadliest of all skin cancers. Even with recent advancements in treatment, there is still a 13% two-year recurrence rate, with approximately 30% of recurrences being distant metastases. Identifying patients at high risk for recurrence or advanced disease is critical for optimal clinical decision-making. Currently, there is substantial variability in the selection of screening tests and imaging, with most modalities characterized by relatively low accuracy. In the current study, we built upon a preliminary examination of differential scanning calorimetry (DSC) in the melanoma setting to examine its utility for diagnostic and prognostic assessment. Using regression analysis, we found that selected DSC profile (thermogram) parameters were useful for differentiation between melanoma patients and healthy controls, with more complex models distinguishing melanoma patients with no evidence of disease from patients with active disease. Thermogram features contributing to the third principal component (PC3) were useful for differentiation between controls and melanoma patients, and Cox proportional hazards regression analysis indicated that PC3 was useful for predicting the overall survival of active melanoma patients. With the further development and optimization of the classification method, DSC could complement current diagnostic strategies to improve screening, diagnosis, and prognosis of melanoma patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Estados Unidos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Varredura Diferencial de Calorimetria , Prognóstico
3.
Cancers (Basel) ; 13(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771491

RESUMO

Early detection of lung cancer (LC) significantly increases the likelihood of successful treatment and improves LC survival rates. Currently, screening (mainly low-dose CT scans) is recommended for individuals at high risk. However, the recent increase in the number of LC cases unrelated to the well-known risk factors, and the high false-positive rate of low-dose CT, indicate a need to develop new, non-invasive methods for LC detection. Therefore, we evaluated the use of differential scanning calorimetry (DSC) for LC patients' diagnosis and predicted survival. Additionally, by applying mass spectrometry, we investigated whether changes in O- and N-glycosylation of plasma proteins could be an underlying mechanism responsible for observed differences in DSC curves of LC and control subjects. Our results indicate selected DSC curve features could be useful for differentiation of LC patients from controls with some capable of distinction between subtypes and stages of LC. DSC curve features also correlate with LC patients' overall/progression free survival. Moreover, the development of classification models combining patients' DSC curves with selected plasma protein glycosylation levels that changed in the presence of LC could improve the sensitivity and specificity of the detection of LC. With further optimization and development of the classification method, DSC could provide an accurate, non-invasive, radiation-free strategy for LC screening and diagnosis.

4.
Biochim Biophys Acta Gen Subj ; 1862(8): 1701-1710, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29705200

RESUMO

BACKGROUND: Differential Scanning Calorimetry (DSC) is a technique traditionally used to study thermally induced macromolecular transitions, and it has recently been proposed as a novel approach for diagnosis and monitoring of several diseases. We report a pilot study applying Thermal Liquid Biopsy (TLB, DSC thermograms of plasma samples) as a new clinical approach for diagnostic assessment of melanoma patients. METHODS: Multiparametric analysis of DSC thermograms of patient plasma samples collected during treatment and surveillance (63 samples from 10 patients) were compared with clinical and diagnostic imaging assessment to determine the utility of thermograms for diagnostic assessment in melanoma. Nine of the ten patients were stage 2 or 3 melanoma subjects receiving adjuvant therapy after surgical resection of their melanomas. The other patient had unresectable stage 4 melanoma and was treated with immunotherapy. Two reference groups were used: (A) 36 healthy subjects and (B) 13 samples from 8 melanoma patients who had completed successful surgical management of their disease and were determined by continued clinical assessment to have no evidence of disease. RESULTS: Plasma thermogram analysis applied to melanoma patients generally agrees with clinical evaluation determined by physical assessment or diagnostic imaging (~80% agreement). No false negatives were obtained from DSC thermograms. Importantly, this methodology was able to detect changes in disease status before it was identified clinically. CONCLUSIONS: Thermal Liquid Biopsy could be used in combination with current clinical assessment for the earlier detection of melanoma recurrence and metastasis. GENERAL SIGNIFICANCE: TLB offers advantages over current diagnostic techniques (PET/CT imaging), limited in frequency by radiation burden and expense, in providing a minimally-invasive, low-risk, low-cost clinical test for more frequent personalized patient monitoring to assess recurrence and facilitate clinical decision-making.


Assuntos
Melanoma/patologia , Monitorização Fisiológica/métodos , Recidiva Local de Neoplasia/patologia , Adulto , Varredura Diferencial de Calorimetria , Estudos de Casos e Controles , Análise Diferencial Térmica , Feminino , Humanos , Biópsia Líquida , Masculino , Melanoma/sangue , Melanoma/terapia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/terapia , Projetos Piloto
5.
J Lipid Res ; 58(2): 393-402, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28011707

RESUMO

Liver X receptor (LXR)α is a nuclear receptor that responds to oxysterols and cholesterol overload by stimulating cholesterol efflux, transport, conversion to bile acids, and excretion. LXRα binds to and is regulated by synthetic (T-0901317, GW3695) and endogenous (oxysterols) ligands. LXRα activity is also modulated by FAs, but the ligand binding specificity of FA and acyl-CoA derivatives for LXRα remains unknown. We investigated whether LXRα binds FA or FA acyl-CoA with affinities that mimic in vivo concentrations, examined the effect of FA chain length and the degree of unsaturation on binding, and investigated whether FAs regulate LXRα activation. Saturated medium-chain FA (MCFA) displayed binding affinities in the low nanomolar concentration range, while long-chain fatty acyl-CoA did not bind or bound weakly to LXRα. Circular dichroic spectra and computational docking experiments confirmed that MCFA bound to the LXRα ligand binding pocket similar to the known synthetic agonist of LXRα (T0901317), but with limited change to the conformation of the receptor. Transactivation assays showed that MCFA activated LXRα, whereas long-chain FA caused no effect. Our results suggest that LXRα functions as a receptor for saturated FA or acyl-CoA of C10 and C12 in length.


Assuntos
Acil Coenzima A/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Receptores X do Fígado/metabolismo , Acil Coenzima A/química , Animais , Células COS , Chlorocebus aethiops , Colesterol/química , Ácidos Graxos/química , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/metabolismo , Ligantes , Oxisteróis/química , Oxisteróis/metabolismo , Ligação Proteica , Sulfonamidas/química , Sulfonamidas/metabolismo
6.
Oncotarget ; 7(43): 69829-69843, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27634880

RESUMO

Diluted (1%) plasma induces migration of malignant cell lines much more strongly than potent pro-metastatic factors. To characterize the factor(s) present in diluted plasma responsible for this phenomenon we performed i) heat inactivation, ii) dialysis, iii) proteinase K treatment, and iv) molecular size filtration studies. We found that this remarkable pro-migratory activity of diluted normal plasma is associated with a ~50-100-kD protein that interacts with GαI protein-coupled receptors and activates p42/44 MAPK and AKT signaling in target cells. Since this pro-migratory activity of 1% plasma decreases at higher plasma concentrations (> 20%), but is retained in serum, we hypothesized that fibrinogen may be involved as a chaperone of the protein(s). To identify the pro-migratory protein(s) present in diluted plasma and fibrinogen-depleted serum, we performed gel filtration and hydrophobic interaction chromatography followed by mass spectrometry analysis. We identified several putative protein candidates that were further tested in in vitro experiments. We found that this pro-migratory factor chaperoned by fibrinogen is vitronectin, which activates uPAR, and that this effect can be inhibited by fibrinogen. These results provide a novel mechanism for the metastasis of cancer cells to lymphatics and body cavities, in which the concentration of fibrinogen is low, and thus suggests that free vitronectin stimulates migration of tumor cells.


Assuntos
Fibrinogênio/fisiologia , Vitronectina/fisiologia , Líquido Ascítico/fisiologia , Movimento Celular , Quimiotaxia , Humanos , Sistema Linfático/fisiologia , Metástase Neoplásica , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Células Tumorais Cultivadas
7.
J Lipid Res ; 51(11): 3103-16, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20628144

RESUMO

Although the pathophysiology of diabetes is characterized by elevated levels of glucose and long-chain fatty acids (LCFA), nuclear mechanisms linking glucose and LCFA metabolism are poorly understood. As the liver fatty acid binding protein (L-FABP) shuttles LCFA to the nucleus, where L-FABP directly interacts with peroxisome proliferator-activated receptor-α (PPARα), the effect of glucose on these processes was examined. In vitro studies showed that L-FABP strongly bound glucose and glucose-1-phosphate (K(d) = 103 ± 19 nM and K(d) = 20 ± 3 nM, respectively), resulting in altered L-FABP conformation, increased affinity for lipid ligands, and enhanced interaction with PPARα. In living cells, glucose stimulated cellular uptake and nuclear localization of a nonmetabolizable fluorescent fatty acid analog (BODIPY C-16), particularly in the presence of L-FABP. These data suggest for the first time a direct role of glucose in facilitating L-FABP-mediated uptake and distribution of lipidic ligands to the nucleus for regulation of PPARα transcriptional activity.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Glucose/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas de Ligação a Ácido Graxo/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glucose/metabolismo , Camundongos , PPAR alfa/química , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Ratos
8.
Autophagy ; 5(5): 649-62, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19287211

RESUMO

Macroautophagy is an intracellular, vesicle-mediated mechanism for the sequestration and ultimate lysosomal degradation of cytoplasmic proteins, organelles and macromolecules. The macroautophagy process and many of the autophagy-specific (Atg) proteins are remarkably well conserved in higher eukaryotes. In yeast, the Atg1 kinase complex includes Atg1, Atg13, Atg17, and at least four other interacting proteins, some of which are phosphorylated in a TOR-dependent manner, placing the Atg1 signaling complex downstream of a major nutrient-sensing pathway. Atg1 orthologs, including mammalian unc-51-like kinase 1 (ULK1), have been identified in higher eukaryotes and have been functionally linked to autophagy. This suggests that other components of the Atg1 complex exist in higher eukaryotes. Recently, a putative human Atg13 ortholog, FLJ20698, was identified by gapped-BLAST analysis. We show here that FLJ20698 (Atg13) is a ULK1-interacting phosphoprotein that is essential for macroautophagy. Furthermore, we identify a novel, human Atg13-interacting protein, FLJ11773, which we have termed Atg101. Atg101 is essential for autophagy and interacts with ULK1 in an Atg13-dependent manner. Additionally, we present evidence that intracellular localization of the ULK1 complex is regulated by nutrient conditions. Finally, we demonstrate that Atg101 stabilizes the expression of Atg13 in the cell, suggesting that Atg101 contributes to Atg13 function by protecting Atg13 from proteasomal degradation. Therefore, the identification of the novel protein, Atg101, and the validation of Atg13 and Atg101 as ULK1-interacting proteins, suggests an Atg1 complex is involved in the induction of macroautophagy in mammalian cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Linhagem Celular , Humanos , Modelos Biológicos , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas Tirosina Quinases/metabolismo
9.
Autophagy ; 4(2): 185-94, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18059170

RESUMO

Cargo-based assays have proven invaluable in the study of macroautophagy in yeast and mammalian cells. Proteomic analysis of autolysosomes identified the metabolic enzyme, betaine homocysteine methyltransferase (BHMT), as a potential cargo-based, end-point marker for mammalian macroautophagy. To test whether degradation of BHMT can be used to measure macroautophagic flux in mammalian cells, we created a BHMT fusion protein (GST-BHMT) that demonstrates starvation-induced, site-specific fragmentation in a variety of cell lines. Subcellular fractionation studies show that the GST-BHMT fragment co-fractionates with vesicles containing lysosomal and autolysosomal markers. Furthermore, both pharmacological inhibitors of macroautophagy and depletion of macroautophagy-specific proteins reduce accumulation of the fragment. In the course of these studies, we observed that fragmentation of GST-BHMT did not occur in forms of the reporter with truncation or point mutations that destabilize oligomerization. Since stable oligomerization of BHMT is essential for its catalytic activity, a point mutation known to ablate BHMT activity was tested. We show that accumulation of the GST-BHMT fragment is not impaired in a catalytically inactive mutant, indicating that selective proteolysis of GST-BHMT requires stable quaternary structure independent of effects on activity. Also, the loss of fragmentation observed in the oligomerization deficient mutants does not seem to be due to a defect of sequestration and lysosomal loading, suggesting that disruption of stable quaternary structure affects the ability of a lysosomal protease to cleave the newly-delivered cargo. Finally, we propose that the cargo-based GST-BHMT assay will be a valuable addition to existing macroautophagy assays in mammalian cells.


Assuntos
Autofagia/fisiologia , Betaína-Homocisteína S-Metiltransferase/metabolismo , Lisossomos/metabolismo , Processamento de Proteína Pós-Traducional , Aminoácidos Essenciais/farmacologia , Animais , Autofagia/efeitos dos fármacos , Betaína-Homocisteína S-Metiltransferase/química , Células Cultivadas , Técnicas de Laboratório Clínico , Meios de Cultura Livres de Soro/farmacologia , Dimerização , Estabilidade Enzimática/fisiologia , Glutationa Transferase/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...